
CS 4530: Fundamentals of Software Engineering

Module 8: Patterns of React

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Recognize and apply four common patterns in
functional React components (useState,
useEffect, useCustomHook, useContext)

• Understand how React functional components
allow behaviors to be reused

2

Review: React Components Should be
Reusable
• Organize related logic and presentation into a single

unit
• Includes necessary state and the logic for updating this

state
• Includes presentation for rendering this state into HTML

• Example: “Like” button
• What does the button keep track of?

• Is it liked or not, What post this is associated with
• What logic does the button have?

• When changing like status, send update to server
• How does the button look?

• Filled in if liked, hollow if not

3

Motivation: React Component
Behaviors Should be Reusable
• Idea: Component behavior is often reused even without

reusing the same presentation (UI)
• Example, Covey.Town frontend: “Show the players in

the current video call”
• Multiple UI components might want to render this

(and auto-update in real-time)
• CoveyTownController has the list of players, their

locations, emits events when players change
• How to implement this behavior (“retrieve the

current players in video call, automatically re-
render when changes) in a reusable way?

4

React “Hooks” Solve Common Problems
• How to keep track of state that can be re-used

across multiple renders?
• How to define some aspects of our component that

should change when some data changes?
• How to share data from one component to many,

without passing lots of props?
• Broadly: How to define common behaviors that can

be reused by other components?

5

Pattern: useState Tracks Mutable State
• Context: React components are just functions, called on each render.
• Problem 1: How to keep track of state that can be re-used across multiple

renders?
• Problem 2: How to tell React that state has changed, so component should re-

render?

6

export function LikeButton(){
if (isLiked) {

return (<IconButton aria-label="unlike"
icon={<AiFillHeart />} onClick={() => setIsLiked(false)} />);

} else {
return (<IconButton aria-label="like"

icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} />);
}

}

Problem 1 - where to store this? Problem 2 - How to tell React?

useState Tracks Mutable State

7

export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
if (isLiked) {
return (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} />);
} else {
return (<IconButton aria-label="like"

icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} />);
}

}

const [state, setState] = useState<TypeOfState>(initialValue);

useState returns an array of length 2: the first value is the current
state value, second is a setter we can call to update that value.
React doesn’t know or care what names you choose here (var,
setVar are convention though!)

<TypeOfState> is an optional generic type
parameter to declare the type of state

initialValue is the value that state should
take before the first call to setState

useState should be called once per-state
variable
• To have multiple state variables, call useState for each one
• Example: Track how many times the “like” button has been clicked

8

export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

if (isLiked) {
return (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} />);
} else {
return (<IconButton aria-label="like" icon={<AiOutlineHeart />} onClick={() => {

setCount(count + 1)
setIsLiked(true)

}} />);
}

}

State Setters are Asynchronous
• Recall from Module 7: React uses a carefully optimized approach to (re)-

render components
• Components are not re-rendered immediately upon calling a state setter

9

export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

if (isLiked) {
...

} else {
return (<IconButton aria-label="like" icon={<AiOutlineHeart />}

onClick={() => {
console.log(`Pre-setCount, count=${count}`)
setCount(count + 1)
setIsLiked(true)
console.log(`Post-setCount, count=${count}`)

}} />);
}

}

Output:
(Click like)
1. Pre-setCount, count=0
2. Post-setCount, count=0

Pattern: useEffect Invokes Side-Effects after
rendering
• Context: React components are just functions, called on each render.
• Problem: How to define side-effects that run in response to data

changing (and in turn, the component re-rendering)?
• Pattern: React’s useEffect hook

10

useEffect(()=>{
// Code that runs after each render
return () => {
// Code that runs after the component is removed from the page OR before hook runs again

}
})

useEffect Invokes Side-Effects after
rendering
• React’s useEffect hook accepts a function that is always called after

the component is updated

11

export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

useEffect(()=>{
console.log(`Like has been clicked ${count} times`)

})
if (isLiked) {
return (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} />);
} else {
return (<IconButton aria-label="like" icon={<AiOutlineHeart />}
onClick={() => {

console.log(`Pre-setCount, count=${count}`)
setCount(count + 1)
setIsLiked(true)
console.log(`Post-setCount, count=${count}`)

}} />);
}

}

Output:
Like has been clicked 0 times
(Click like)
1. Pre-setCount, count=0
2. Post-setCount, count=0
Like has been clicked 1 times

(Click un-like)
Like has been clicked 1 times
(Click like)
Like has been clicked 2 times
(Click un-like)
Like has been clicked 2 times

useEffect Dependencies Limit Their
Execution
• useEffect takes an optional array of dependencies
• The effect is only executed if the values in the dependency array

change (by reference equality)

12

useEffect(()=>{
// Code that runs after each render
return () => {
// Code that runs after the component is removed from the page OR before hook runs again

}
})

Only run the effect if dependency or anotherDependency change to point to a different thing

useEffect(()=>{
// Code that runs after each render if dependency or anotherDependency change
return () => {
// Code that runs after the component is removed from the page OR before hook runs again

}
}, [dependency, anotherDependency])

Only run the effect on the very first render

useEffect(()=>{
// Code that runs after each render if dependency or anotherDependency change

}, [])

useEffect Dependencies Limit Their
Execution
• If we add “count” to the dependencies array, then the effect is only

executed when the value of “count” changes

13

export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

useEffect(()=>{
console.log(`Like has been clicked ${count} times`)

}, [count])
if (isLiked) {
return (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} />);
} else {
return (<IconButton aria-label="like" icon={<AiOutlineHeart />}
onClick={() => {

console.log(`Pre-setCount, count=${count}`)
setCount(count + 1)
setIsLiked(true)
console.log(`Post-setCount, count=${count}`)

}} />);
}

}

Output:
Like has been clicked 0 times
(Click like)
1. Pre-setCount, count=0
2. Post-setCount, count=0
Like has been clicked 1 times

(Click un-like)
(Click like)
Like has been clicked 2 times
(Click un-like)

export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

useEffect(()=>{
if(isLiked){
setCount((prevCount) => prevCount + 1)

}
}, [isLiked])
useEffect(()=>{
console.log(`Like has been clicked ${count + 1} times`)

}, [count])

if (isLiked) {
return <IconButton aria-label="unlike" icon={<AiFillHeart />} onClick={() => setIsLiked(false)} />;

} else {
return <IconButton aria-label="like" icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} />;

}
}

useEffect + useState: Maintaining state for
side-effects
• An extremely common pattern is to combine useEffect and useState
• Often requires using a “state updater” instead of concrete value

14

Run this effect only when isLiked changes

Alternate call pattern for state setter: pass a function that
returns the new state based on the old state

Run this effect only when count changes

Pattern: use<HookName> For Custom
Hooks
• Problem: How to compose and reuse “behaviors” that might involve

storing state and performing side-effects?
• Solution: Create a “custom hook” - a function that starts with “use”

and calls other hooks
• By convention, all custom React hooks should start with the prefix

“use”

15

use<HookName>: Write Custom Hooks
• Calls to multiple hooks can be composed into a “custom” hook
• By convention, all custom React hooks should start with the prefix

“use”

16

export function useLogCountOfProp(propertyName: string, propertyValue: boolean){
const [count, setCount] = useState(0);
useEffect(()=>{
if(propertyValue){
setCount((prevCount) => prevCount + 1)

}
}, [propertyValue])
useEffect(()=>{
console.log(`Property ${propertyName} was set to true ${count} times`);

}, [count, propertyName])
}
export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
useLogCountOfProp('isLiked', isLiked);
// No 'count' here, just the original like button

}

Pattern: useContext and Passing State
• Problem: Applications often some data that changes very infrequently, and

is needed by many components. Passing that data as properties is
cumbersome

• Example: Covey.Town’s frontend has a TownController. Any component
that needs to access data about the town needs a reference to it

17

export function CoveyTown(){
const [townController, setTownController] = useState<TownController>();
if(townController){ //Logged in
return <TownMap townController={townController} />

}
return <Login />

}
export function TownMap(props: {townController: TownController}){
return <div>
<NewConversationModal townController={props.townController} />
<SocialSidebar townController={props.townController} />

</div>
}

Global state: once we are
logged in, every component
will need this

We need to pass this to
EVERY component!?

useContext Accesses Shared State
• React.createContext creates a “context” - a pointer to shared state
• A provider for that context sets the value
• useContext returns the current value for that context
• A custom hook makes it easy for client components to access the shared value

18

export const TownControllerContext = React.createContext<TownController | null>(null);
export function CoveyTown(){
const [townController, setTownController] = useState<TownController>();
if(townController){ //Logged in
return (<TownControllerContext.Provider value={townController}>

<TownMap />
</TownControllerContext.Provider>)

}
return <Login />

}
export default function useTownController(): TownController {
const ctx = useContext(TownControllerContext);
assert(ctx, 'TownController context should be defined in order to use this hook.');
return ctx;

}

Shared state: Every
component nested within the
provider can access

This hook will always
return the TownController

Create a context to store our
shared state

React Functional Components are
More Modular than Class Components
• Functional components

• Create a useEffect for each
behavior

• Each useEffect can have its
own cleanup callback

• Compose multiple hooks into
custom hooks for reusable
behaviors

19

• Class components
• Implement side-effects in

componentDidMount,
componentDidUpdate,
componentWillUnmount

• Each side-effect is spread
between all three methods

• All side-effects are mixed
together

• Can not easily reuse effects
between components

The Rules of Hooks
• Hooks are APIs provided by React that let components “hook” into

React’s internal behavior
• Each time that a component is rendered, the hooks will be called

again
• React be able to correlate the same calls to the same hook, e.g. to

differentiate between two useState calls
• The rules of hooks ensure consistent behavior

20

export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);
...

}

How does React keep track of
which state variable is
which?

(The Rules of Hooks say how)

The Rules of Hooks
1. Only call hooks at the top level

• Not within loops, inside conditions, or nested functions
• Rationale: The order of hooks called must always be the same

each time a component renders
2. Only call hooks from React Components or Custom Hooks

• Not from any other helper methods or classes
• Rationale: React must know the component that the call to the

hook is associated with

21

export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);
...

}

React knows which useState
is which by tracking calls to
them from components in
the render tree

We Use Two ESLint Rules for React Hooks
• You should not violate the rules of hooks. These

linter plugins help detect violations
• React-hooks/rules-of-hooks

• Enforces that hooks are only called from React
functional components or custom hooks

• React-hooks/exhaustive-deps
• Enforces that all variables used in useEffects are

included as dependencies

22

A Bigger Example: Transcript App
• Fetches student transcripts from our

REST API
• Uses useEffect to fetch data when

page is first loaded
• Stores transcripts as state in

component
• Has not yet fully implemented “edit”

or “add” functionality

23

Review
• Now that you've studied this lesson, you should be

able to:
• Recognize and apply four common patterns in

functional React components (useState,
useEffect, useCustomHook, useContext)

• Understand how React functional components
allow behaviors to be reused

24

	CS 4530: Fundamentals of Software Engineering��Module 8: Patterns of React
	Learning Objectives for this Lesson
	Review: React Components Should be Reusable
	Motivation: React Component Behaviors Should be Reusable
	React “Hooks” Solve Common Problems
	Pattern: useState Tracks Mutable State
	useState Tracks Mutable State
	useState should be called once per-state variable
	State Setters are Asynchronous
	Pattern: useEffect Invokes Side-Effects after rendering
	useEffect Invokes Side-Effects after rendering
	useEffect Dependencies Limit Their Execution
	useEffect Dependencies Limit Their Execution
	useEffect + useState: Maintaining state for side-effects
	Pattern: use<HookName> For Custom Hooks
	use<HookName>: Write Custom Hooks
	Pattern: useContext and Passing State
	useContext Accesses Shared State
	React Functional Components are More Modular than Class Components
	The Rules of Hooks
	The Rules of Hooks
	We Use Two ESLint Rules for React Hooks
	A Bigger Example: Transcript App
	Review

