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Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Recognize and apply four common patterns in 
functional React components (useState, 
useEffect, useCustomHook, useContext)

• Understand how React functional components 
allow behaviors to be reused
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Review: React Components Should be 
Reusable
• Organize related logic and presentation into a single 

unit
• Includes necessary state and the logic for updating this 

state
• Includes presentation for rendering this state into HTML

• Example: “Like” button
• What does the button keep track of?

• Is it liked or not, What post this is associated with
• What logic does the button have?

• When changing like status, send update to server
• How does the button look?

• Filled in if liked, hollow if not
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Motivation: React Component 
Behaviors Should be Reusable
• Idea: Component behavior is often reused even without 

reusing the same presentation (UI)
• Example, Covey.Town frontend: “Show the players in 

the current video call”
• Multiple UI components might want to render this 

(and auto-update in real-time)
• CoveyTownController has the list of players, their 

locations,  emits events when players change
• How to implement this behavior (“retrieve the 

current players in video call, automatically re-
render when changes) in a reusable way?
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React “Hooks” Solve Common Problems
• How to keep track of state that can be re-used 

across multiple renders?
• How to define some aspects of our component that 

should change when some data changes?
• How to share data from one component to many, 

without passing lots of props?
• Broadly: How to define common behaviors that can 

be reused by other components?
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Pattern: useState Tracks Mutable State
• Context: React components are just functions, called on each render.
• Problem 1: How to keep track of state that can be re-used across multiple 

renders?
• Problem 2: How to tell React that state has changed, so component should re-

render?
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export function LikeButton(){
if (isLiked) {

return (<IconButton aria-label="unlike"
icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );

} else {
return (<IconButton aria-label="like"

icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} /> );
}

}

Problem 1 - where to store this? Problem 2 - How to tell React?



useState Tracks Mutable State
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export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
if (isLiked) {
return (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );
} else {
return (<IconButton aria-label="like"

icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} /> );
}

}

const [state, setState] = useState<TypeOfState>(initialValue);

useState returns an array of length 2: the first value is the current 
state value, second is a setter we can call to update that value.
React doesn’t know or care what names you choose here (var, 
setVar are convention though!)

<TypeOfState> is an optional generic type 
parameter to declare the type of state

initialValue is the value that state should 
take before the first call to setState



useState should be called once per-state 
variable
• To have multiple state variables, call useState for each one
• Example: Track how many times the “like” button has been clicked
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export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

if (isLiked) {
return (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );
} else {
return (<IconButton aria-label="like" icon={<AiOutlineHeart />} onClick={() => {

setCount(count + 1)
setIsLiked(true)

}} /> );
}

}



State Setters are Asynchronous
• Recall from Module 7: React uses a carefully optimized approach to (re)-

render components
• Components are not re-rendered immediately upon calling a state setter
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export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

if (isLiked) {
...

} else {
return (<IconButton aria-label="like" icon={<AiOutlineHeart />} 

onClick={() => {
console.log(`Pre-setCount, count=${count}`)
setCount(count + 1)
setIsLiked(true)
console.log(`Post-setCount, count=${count}`)

}} /> );
}

}

Output:
(Click like)
1. Pre-setCount, count=0
2. Post-setCount, count=0



Pattern: useEffect Invokes Side-Effects after 
rendering
• Context: React components are just functions, called on each render.
• Problem: How to define side-effects that run in response to data 

changing (and in turn, the component re-rendering)?
• Pattern: React’s useEffect hook
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useEffect(()=>{
// Code that runs after each render
return () => {
// Code that runs after the component is removed from the page OR before hook runs again

}
})



useEffect Invokes Side-Effects after 
rendering
• React’s useEffect hook accepts a function that is always called after

the component is updated
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export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

useEffect(()=>{
console.log(`Like has been clicked ${count} times`)

})
if (isLiked) {
return (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );
} else {
return (<IconButton aria-label="like" icon={<AiOutlineHeart />}
onClick={() => {

console.log(`Pre-setCount, count=${count}`)
setCount(count + 1)
setIsLiked(true)
console.log(`Post-setCount, count=${count}`)

}} /> );
}

}

Output:
Like has been clicked 0 times
(Click like)
1. Pre-setCount, count=0
2. Post-setCount, count=0
Like has been clicked 1 times

(Click un-like)
Like has been clicked 1 times
(Click like)
Like has been clicked 2 times
(Click un-like)
Like has been clicked 2 times



useEffect Dependencies Limit Their 
Execution
• useEffect takes an optional array of dependencies
• The effect is only executed if the values in the dependency array 

change (by reference equality)
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useEffect(()=>{
// Code that runs after each render
return () => {
// Code that runs after the component is removed from the page OR before hook runs again

}
})

Only run the effect if dependency or anotherDependency change to point to a different thing

useEffect(()=>{
// Code that runs after each render if dependency or anotherDependency change
return () => {
// Code that runs after the component is removed from the page OR before hook runs again

}
}, [dependency, anotherDependency])

Only run the effect on the very first render

useEffect(()=>{
// Code that runs after each render if dependency or anotherDependency change

}, [])



useEffect Dependencies Limit Their 
Execution
• If we add “count” to the dependencies array, then the effect is only 

executed when the value of “count” changes
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export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

useEffect(()=>{
console.log(`Like has been clicked ${count} times`)

}, [count])
if (isLiked) {
return (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );
} else {
return (<IconButton aria-label="like" icon={<AiOutlineHeart />}
onClick={() => {

console.log(`Pre-setCount, count=${count}`)
setCount(count + 1)
setIsLiked(true)
console.log(`Post-setCount, count=${count}`)

}} /> );
}

}

Output:
Like has been clicked 0 times
(Click like)
1. Pre-setCount, count=0
2. Post-setCount, count=0
Like has been clicked 1 times

(Click un-like)
(Click like)
Like has been clicked 2 times
(Click un-like)



export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);

useEffect(()=>{
if(isLiked){
setCount((prevCount) => prevCount + 1)

}
}, [isLiked])
useEffect(()=>{
console.log(`Like has been clicked ${count + 1} times`)

}, [count])

if (isLiked) {
return <IconButton aria-label="unlike" icon={<AiFillHeart />} onClick={() => setIsLiked(false)} />;

} else {
return <IconButton aria-label="like" icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} />;

}
}

useEffect + useState: Maintaining state for 
side-effects
• An extremely common pattern is to combine useEffect and useState
• Often requires using a “state updater” instead of concrete value
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Run this effect only when isLiked changes

Alternate call pattern for state setter: pass a function that 
returns the new state based on the old state

Run this effect only when count changes



Pattern: use<HookName> For Custom 
Hooks
• Problem: How to compose and reuse “behaviors” that might involve 

storing state and performing side-effects?
• Solution: Create a “custom hook” - a function that starts with “use” 

and calls other hooks
• By convention, all custom React hooks should start with the prefix 

“use”
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use<HookName>: Write Custom Hooks
• Calls to multiple hooks can be composed into a “custom” hook
• By convention, all custom React hooks should start with the prefix 

“use”
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export function useLogCountOfProp(propertyName: string, propertyValue: boolean){
const [count, setCount] = useState(0);
useEffect(()=>{
if(propertyValue){
setCount((prevCount) => prevCount + 1)

}
}, [propertyValue])
useEffect(()=>{
console.log(`Property ${propertyName} was set to true ${count} times`);

}, [count, propertyName])
}
export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
useLogCountOfProp('isLiked', isLiked);
// No 'count' here, just the original like button

}



Pattern: useContext and Passing State
• Problem: Applications often some data that changes very infrequently, and 

is needed by many components. Passing that data as properties is 
cumbersome

• Example: Covey.Town’s frontend has a TownController. Any component 
that needs to access data about the town needs a reference to it
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export function CoveyTown(){
const [townController, setTownController] = useState<TownController>();
if(townController){ //Logged in
return <TownMap townController={townController} />

}
return <Login />

}
export function TownMap(props: {townController: TownController}){
return <div>
<NewConversationModal townController={props.townController} />
<SocialSidebar townController={props.townController} />

</div>
}

Global state: once we are 
logged in, every component 
will need this

We need to pass this to 
EVERY component!?



useContext Accesses Shared State
• React.createContext creates a “context” - a pointer to shared state
• A provider for that context sets the value
• useContext returns the current value for that context
• A custom hook makes it easy for client components to access the shared value
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export const TownControllerContext = React.createContext<TownController | null>(null);
export function CoveyTown(){
const [townController, setTownController] = useState<TownController>();
if(townController){ //Logged in
return (<TownControllerContext.Provider value={townController}>

<TownMap />
</TownControllerContext.Provider>)

}
return <Login />

}
export default function useTownController(): TownController {
const ctx = useContext(TownControllerContext);
assert(ctx, 'TownController context should be defined in order to use this hook.');
return ctx;

}

Shared state: Every 
component nested within the 
provider can access

This hook will always 
return the TownController

Create a context to store our 
shared state



React Functional Components are 
More Modular than Class Components
• Functional components

• Create a useEffect for each 
behavior

• Each useEffect can have its 
own cleanup callback 

• Compose multiple hooks into 
custom hooks for reusable 
behaviors
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• Class components
• Implement side-effects in 

componentDidMount, 
componentDidUpdate, 
componentWillUnmount

• Each side-effect is spread 
between all three methods

• All side-effects are mixed 
together

• Can not easily reuse effects 
between components



The Rules of Hooks
• Hooks are APIs provided by React that let components “hook” into 

React’s internal behavior
• Each time that a component is rendered, the hooks will be called 

again
• React be able to correlate the same calls to the same hook, e.g. to 

differentiate between two useState calls
• The rules of hooks ensure consistent behavior
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export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);
...

}

How does React keep track of 
which state variable is 
which?

(The Rules of Hooks say how)



The Rules of Hooks
1. Only call hooks at the top level

• Not within loops, inside conditions, or nested functions
• Rationale: The order of hooks called must always be the same 

each time a component renders
2. Only call hooks from React Components or Custom Hooks

• Not from any other helper methods or classes
• Rationale: React must know the component that the call to the 

hook is associated with
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export function LikeButton(){
const [isLiked, setIsLiked] = useState(false);
const [count, setCount] = useState(0);
...

}

React knows which useState 
is which by tracking calls to 
them from components in 
the render tree



We Use Two ESLint Rules for React Hooks
• You should not violate the rules of hooks. These 

linter plugins help detect violations
• React-hooks/rules-of-hooks

• Enforces that hooks are only called from React 
functional components or custom hooks 

• React-hooks/exhaustive-deps
• Enforces that all variables used in useEffects are 

included as dependencies
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A Bigger Example: Transcript App
• Fetches student transcripts from our 

REST API
• Uses useEffect to fetch data when 

page is first loaded
• Stores transcripts as state in 

component
• Has not yet fully implemented “edit” 

or “add” functionality
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Review
• Now that you've studied this lesson, you should be 

able to:
• Recognize and apply four common patterns in 

functional React components (useState, 
useEffect, useCustomHook, useContext)

• Understand how React functional components 
allow behaviors to be reused
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